Calculus AB

1-2 Limits

Examine: $f(x) = \frac{1}{2}x + 1$

$$f(0) =$$

$$f(2) =$$

New Concept: $\lim_{x \to 2} f(x) =$

One sided limits:

Examine: $f(x) = x^2 - 4$

<u>Left-hand Limits</u> -

$$\lim_{x \to 1^{-}} f(x) =$$

Right-hand Limits -

$$\lim_{x \to 1^+} f(x) =$$

Theorem - The existence of a limit

Does $\lim_{x \to 1} f(x)$ exist? If so, what is it?

How is evaluating a limit different from evaluating a function? Consider:

Using your calculator, graph

$$f(x) = \frac{x^2 - 5x - 6}{x + 1}$$

$$\lim_{x \to -1} f(x) =$$

$$f(1) =$$

Examine the graph of

$$f(x) = \frac{1}{x}$$

$$\lim_{x\to 0^-} f(x) =$$

$$\lim_{x\to 0^+} f(x) =$$

$$\lim_{x\to 0} f(x) =$$

Handout 4 - 11 all

(excerpt from the Stewart book)